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Abstract 

A new bivariate single control chart is proposed to simultaneously monitor the process mean vector and the process covariance matrix. 

This chart, called CSDW chart, is based on the cumulative sum of the diagonal elements of Wishart distributed matrix. Through our 

average run length (ARL) comparison, the results of the simulation show that the new chart outperforms the joint T-square and |S| 

charts, the Max-MEWMA chart, and the VMAX. Examples are also given to illustrate the new chart procedure. 

Keywords: control chart, the joint
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1 Introduction 

 

Statistical process control (SPC) is one of the most 

effective approaches for quality improvement. A control 

chart is one of the most important tools often used to 

observe whether a process is in control or not. There are 

many situations where it is necessary to monitor a process 

with more than one quality characteristics simultaneously. 

Many multivariate control charts have been presented in 

the literature of quality control since Hotelling [1], being 

the first one, provided the 2T  statistic for monitoring the 

mean vector μ  of the process. The first multivariate 

control procedure for monitoring the covariance matrix 
Σ  was derived from the generalized likelihood ratio test. 

For the bivariate process, Alt [2] developed the generalized 

variance statistic S  to control the covariance matrix Σ

. Jackson and Wiley [3] mentioned that any multivariate 

control charts should possess four important properties, 

namely, they should answer these questions: (1) whether 

the process is in-control, (2) whether the specified 

probability of Type-Ⅰ error has been maintained, (3) 

whether the relationships between the variables have been 

taken into account, and (4) what the problem is if the 

process is out of control. 

The substantial amount of researches in non-sequential 

multivariate quality control charts can be classified into 

four broad categories, namely, (1) Multivariate Shewhart 

Charts, (2) Multivariate Cumulative Sum (MCUSUM) 

charts, (3) Multivariate Exponentially Weighted Moving 

Average (MEWMA) Charts, and (4) Multivariate charts 

based on Artificial Neural Networks (ANN) [4]. 

Early research on multivariate Shewhart charts goes 

back to Hotelling’s 2T  statistic [1]. It is the optimal 

statistic for detecting a general shift in the process mean 
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vector for an individual multivariate observation [5]. The 

MCUSUM type control chart proposed by Crosier [6] and 

Pignatiello and Runger [7] is one of the four categories of 

multivariate charts mentioned in the above paragraph. 

Crosier [6] proposed the design procedures and average 

run lengths for two multivariate cumulative sum 

(MCUSUM) quality-control procedures. The first 

MCUSUM procedure reduces each multivariate 

observation to a scalar and then forms a CUSUM of the 

scalars. The second CUSUM procedure formed a CUSUM 

vector directly from the observations. These two 

procedures are compared with each other and with the 

multivariate Shewhart chart. The robustness of the 

procedures and combined Shewhart-CUSUM schemes are 

discussed. Pignatiello and Runger [7] considered several 

distinct approaches for controlling the mean of a 

multivariate normal process. They compared the 

performances of these approaches through estimating the 

average run length and presented the average run length 

results. 

The performances of the MEWMA control charts are 

quite similar to those of the MCUSUM. In this category, 

several researchers proposed different procedures, to name 

a few see Lowry et al. [8], Prabhu and Runger [9], Yumin 

[10], Alessandro [11], Yeh et al. [12], and Fallah Nezhad 

[13]. Lowry et al. [8] proposed an extension of the 

exponentially weighted moving average (EWMA) control 

charts to the multivariate case. They studied the ARL 

performance of the MEWMA chart and compared it with 

the MCUSUM chart. They stated that their control charts 

was similar to the MCUSUM control chart in detecting a 

shift in the mean vector of a multivariate normal 

distribution. Yumin [10] proposed a new MEWMA 

control chart based on the principal components of the 
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original variables. Alessandro [11] presented a one-side 

MEWMA control chart based on the restricted maximum 

likelihood estimator. Yeh et al. [12] introduced a new 

multivariate exponentially weighted moving average 

control chart designed to detect small changes in the 

variability of correlated multivariate quality 

characteristics. Fallah Nezhad [13] proposed a new 

approach to detect shifts of a multivariate quality control 

procedure. He compared the chart with a MCUSUM 

control chart and a MEWMA control chart based on the in- 

and out-of-control ARL. He concluded that the chart 

performs better than the other two methods in detecting 

shifts in the standard deviation and correlation. 

Alt [2] reviewed multivariate quality control and 

concluded that an important area worthy of further 

research is to propose a single control chart for monitoring 

the process location and process dispersion at the same 

time. Some researchers have contributed to the theory and 

practical use of multivariate single control charts. Khoo 

[14] developed a control chart with the 2T  and S  

statistics to monitor both the bivariate process mean and 

variance. The performance of the new chart by means of 

its average run length (ARL) profiles was obtained by 

simulation studies. The proposed chart is insensitive to 

small changes in the multivariate process mean and 

variance. Chen et al. [15] proposed a single EWMA chart, 

named Max-MEWMA chart, to control the mean vector 

and the covariance matrix simultaneously. Their chart is 

more efficient than the joint 2T  and S  charts in 

signalling small changes in the process. Machado and 

Costa [16] presented the use of two charts jointly, based on 

the non-central chi-square statistic for monitoring the 

mean vector and the covariance matrix of a bivariate 

process. The scheme is faster than the joint use of the 2T  

and S  charts in signalling small changes in a bivariate 

process mean. Costa and Machado [17] proposed the 

VMAX statistic to control the covariance matrix of 

multivariate process. The VMAX chart is always more 

efficient than the chart based on the generalized variance

S . Bersimis et al. [18] discussed the basic procedure for 

the implementation of multivariate statistical process 

control via control charting. They reviewed multivariate 

extensions for all kinds of univariate control charts, such 

as multivariate Shewhart-type control charts, multivariate 

CUSUM control charts and multivariate EWMA control 

charts. In addition, they reviewed unique procedure for the 

construction of multivariate control charts, based on 

multivariate statistical techniques, such as principal 

components analysis (PCA) and partial least squares 

(PLS). S. Y. Teh, Michael B. C. Khoo et al. [19] proposed 

a new GWMA chart, called the Max-GWMA chart, which 

uses a single statistic for a simultaneous monitoring of the 

process mean and variance. The statistic of the Max-

GWMA chart is based on the maximum of the absolute 

values of two GWMA statistics, one for controlling the 

mean while the other the variance. They show that the 

Max-GWMA chart outperforms the combined GWMA 

chart, in terms of the average run length (ARL), standard 

deviation of the run length (SDRL) and diagnostic abilities 

performances. Xiaobei Shen, Fugee Tsung et al. [20] 

developed a new multivariate exponentially weighted 

moving average control chart for the monitor of the 

covariance matrices by integrating the classical L2-norm-

based test with a maximum-norm-based test. Numerical 

studies show that the new control chart affords more 

balanced performance under various shift directions than 

the existing ones and is thus an effective tool for 

multivariate SPC applications. Li-ping Liu, Jian-lan Zhong 

et al. [21] proposed a multivariate synthetic control chart 

for monitoring the changes in the covariance matrix of a 

multivariate process under multivariate normal 

distribution. The proposed control chart is a combination 

of the traditional control chart based on conditional 

entropy and the conforming run length chart. The other 

researchers, to name a few, see Bersimis et al. [22], Yeh et 

al. [23], Topalidou and Psarakis [24], and Butte and Tang 

[25]. 

In this study, the statistic based on the Wishart 

distribution is used to develop a bivariate single control 

chart. This new chart can be used to monitor the process 

mean vector and covariance matrix simultaneously. The 

average run length (ARL) performance of the new chart is 

studied and we find that when compared with the joint 2T  

and S  charts, the Max-MEWMA chart, and the VMAX, 

the new chart is faster in detecting changes in the process. 

An example is given to illustrate the implementation of the 

new chart. 

The rest of the paper is organized as follows. In section 

2 we present the new control chart. The performance of the 

CSDW chart is discussed in Section 3. Section 4 provides 

comparisons between four control charts. An example is 

presented to illustrate the implementation and the 

application of the proposed procedure in Section 5. 

Finally, the last section summarizes the paper. 

 

2 The new control chart 

 

The mean vector 0μ  and covariance matrix 0Σ  of a 

multivariate process can be estimated from a large number 

of preliminary samples of the product and can therefore be 

assumed to be known [26,27]. Assuming that 1 2, ,X X …,

jX , 1,2,...,j p , is size n  samples of p  quality 

characteristics process, where 0 0~ ( , )j pNX μ Σ . We 

suppose that the random jX  is independent of each 

other, both within the sample and between the samples. 

Here we need to standardize vector jX  in order to meet 

the objective of the article. Then the random matrix 

javascript:searchByAuthor('S.%20Y.%20TEH');
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where )(  and )(tr  are the gamma function and the 

trace of the matrix, respectively. 

We consider monitoring the process mean vector and 

covariance matrix simultaneously. We define our statistic 

for monitoring the process mean vector and covariance 

matrix as )(WtrTCSDW  , which is the sum of the 

diagonal elements, that is, the square cumulative sum of 

each subgroup sample data, in the matrix W . 

We call the new chart based on CSDWT  the CSDW 

chart. Because CSDWT  is positive, our CSDW chart needs 

an upper control limit (UCL) only, which is obtained 

through simulation. 

Here we suppose that increasing changes in the 

variability and changes in the mean vector are considered. 

Another assumption is that the correlations between 

characteristics are unchanged. 

 

3 The performance of the CSDW chart 

 

A simulation is considered to study the ARL performance 

of the new chart. The study is based on the chart with a 

subgroup size of 5n  and an ARL0 value of 200. The 

UCL values for the chart are obtained through simulation. 

Here, we assume that the in-control mean vector is 
'

0 )0,0(μ  while the in-control covariance matrix is 











1

1
0




Σ . For the in-control situation, the mean 

vector shifts from 0μ  to Sμ  and the covariance matrix 

shifts from 0Σ  to SΣ . According to the assuming, we 

assume, without loss of generality [15], that the mean 

vector shifts from '
0 )0,0(μ  to '),0( bs μ  and the 

covariance matrix shifts from 









1

1
0




Σ  to

2
1

1
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 
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 
, 11   , and 1a . 

Here, we assume that the correlation between the two 

quality characteristics is still equal to   after the 

covariance matrix has been changed. 

 

TABLE 1 ARL values of the CSDW chart when 2p  and 5n  in the simulation. The in-control ARL is 200 

  b 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 

a=1.00 0.01 201.6 78.1 14.5 3.5 1.5 1.1 1.0 

0.32 200.1 86.9 17.6 4.2 1.6 1.1 1.0 

0.63 199.5 103.3 25.0 5.9 2.0 1.2 1.0 

0.94 201.5 115.5 33.9 8.9 2.8 1.3 1.0 

a=1.50 0.0 2.9 2.6 1.9 1.4 1.2 1.0 1.0 

0.3 3.3 2.9 2.1 1.5 1.2 1.1 1.0 

0.6 4.1 3.6 2.6 1.8 1.3 1.1 1.0 

0.9 5.0 4.4 3.2 2.2 1.5 1.2 1.0 

a=2.00 0.0 1.3 1.2 1.2 1.1 1.1 1.0 1.0 

0.3 1.3 1.3 1.2 1.1 1.1 1.0 1.0 

0.6 1.5 1.5 1.4 1.2 1.1 1.0 1.0 

0.9 1.8 1.7 1.6 1.4 1.2 1.1 1.0 

a=2.50 0.0 1.1 1.1 1.0 1.0 1.0 1.0 1.0 

0.3 1.1 1.1 1.1 1.0 1.0 1.0 1.0 

0.6 1.1 1.1 1.1 1.1 1.0 1.0 1.0 

0.9 1.3 1.2 1.2 1.1 1.1 1.0 1.0 

a=3.00 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

0.9 1.1 1.1 1.1 1.1 1.0 1.0 1.0 

UCL=25.181, UCL=26.352, UCL=29.043, UCL=32.354 

 

The ARL performances for the combinations are 

shown in Table 1. 

We see from Table 1 that as a whole the ARL value 

reduces as the magnitude of the shift in the mean vector 

increases and/or the variability in the covariance increases. 

For example, from Table 1, the ARL profile for,

1.50, 0.3,a    and b  0.00, 0.50, 1.00, 1.50, 2.00, 

2.50 and 3.00 are 3.3, 2.9, 2.1 1.5, 1.2, 1.1 and 1.0. In this 

situation, the ARL values display a downward trend as the 

mean shift b  increases. The ARL values increase 
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slightly as the correlation increases, e.g. from Table 1, 

the ARL profile, for, 2.00, 1.00,a b   and   0.0, 

0.3, 0.6 and 0.9 are 1.2, 1.2, 1.4 and 1.6, where the ARL 

values display a slight upward trend as increases. 

 

4 The performance of the proposed control chart 

 

Here, the goal is to design a single control chart to monitor 

the process mean vector and the covariance matrix of a 

bivariate process simultaneously. Let 0μ , Sμ  and 0Σ  

be the same as those defined in Section 3 and the case 

considered here be the same as the case in Section 3. 

In this section, some simulation studies are performed 

to evaluate the performance of the proposed procedure, 

based on the in-control average run length (ARL0) 

criterion [28]. Then the studies compare the proposed 

chart’s out-of-control average run length (ARL1) [28] with 

those from the joint 2T  and S  charts [14], the Max-

MEWMA chart [15], and the VMAX chart [17], for 

monitoring the mean vector and/or covariance matrix 

simultaneously. 

For the comparison studies with an intended ARL0 of 

200, the out-of-control ARLs of the proposed chart, as well 

as the other procedures are estimated by 20,000 

independent replications, in each of the different scenarios 

of process changes. In what follows, the performances of 

these procedures are compared, for the different changes 

in the process mean vector and covariance matrix. 

The ARL1 value of the presented procedure, as well 

as the joint 2T  and S  charts [14], the Max-MEWMA 

chart [15], and the VMAX statistic [17] are estimated. 

Random data are generated from a bivariate standard 

normal distribution. Let the quality characteristics be 

random variables 1X  and 2X , where various 

coefficient of correlation are considered. The third up to 

the seventeenth columns in Table 2 show the ARL1 values 

for the methods under consideration. The third up to the 

sixth column of Table 3 show ARL1 value of the VMAX 

chart when just monitoring the covariance matrix. 

We compare the ARL’s of the CSDW chart with the 

ARL’s of the two charts from Chen et al. [15], and the 

ARL’s of the VMAX chart from Costa and Machado [17]. 

The results of Table 2 show the proposed method does 

outperforms the joint 2T  and S  charts [14], and the 

Max-MEWMA [15] methods. The results of Table 3 show 

that the proposed method does a bit better than the VMAX 

chart [17] based on the standardized sample variance of 

quality characteristics. 

 

5 Implementation and examples 

 

We can implement a CSDW chart according to the steps 

summarized as follows: 

1) If process parameters, 0μ  and 0Σ , are unknown, 

substitute X  for 0μ  and S  for 0Σ , where X  and 

S  are the grand mean vector and the average sample 

covariance matrix, respectively. They are estimated from 

a reliable historical data set taken from a stable process. 

2) Standardize the data samples. 

3) Compute the matrix W  and the trace CSDWT of 

the matrix W , for each subgroup. 

4) Find the UCL using simulation based on a desired 

ARL0. 

5) If CSDWT  UCL, plot a point on the chart at that 

time. 

6) If CSDWT >UCL, an out-of-control process is signalled. 

One needs to investigate the cause(s) associated with each 

out-of-control point. These out-of-control points must be 

removed as soon as possible in order to bring the process 

back into an in-control state. 

Example: In this subsection, an example partially 

derived from Crosier [6] is provided to explain further the 

CSDW chart developed above. In Crosier [6], a bivariate 

normal distribution is considered with unit variance and a 

correlation coefficient of 0.5. The in-control process mean 

vector and covariance matrix are given by  '0 0,0μ  and 











1　　5.0

5.0　　1
0Σ , respectively. 

For our purpose, in Table 4, we initially generate 20 

samples of size 5n , in which the first 10 samples were 

simulated with the condition that the process is in control 

and the remaining 10 samples were simulated considering 

that the assignable cause has changed the mean vector from 

0μ  to Sμ  and the covariance matrix from 0Σ  to











1　　5.0

5.0　　1
5.1sΣ , that is, a=1.5 and b=0.5. Then we can 

obtain CSDWT . 
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TABLE 2 ARL’s of the CSDW chart, the Max-MEWMA chart and the combination of 2T  chart and || S  chart when 2p  and 5n  in the 

Case of Section 3 
  b 

Proposed method  Max-MEWMA chart1  Combination chart1 

0.00 0.50 1.00 2.00 3.00  0.00 0.50 1.00 2.00 3.00  0.00 0.50 1.00 2.00 3.00 

a=1.00 0.0 201.6 78.1 14.5 1.5 1.0  199.4 11.5 3.9 2.0 1.2  200.2 48.4 6.6 1.1 1.0 

0.3 200.1 86.9 17.6 1.6 1.0  199.5 11.5 3.7 1.9 1.1  200.2 43.6 5.7 1.1 1.0 

0.6 199.5 103.3 25.0 2.0 1.0  199.5 7.7 3.0 1.6 1.0  200.2 28.2 3.2 1.0 1.0 

0.9 201.5 115.5 33.9 2.8 1.0  199.5 3.3 1.8 1.0 1.0  200.2 4.2 1.0 1.0 1.0 

a=1.50 0.0 2.9 2.6 1.9 1.2 1.0  4.2 3.8 3.1 1.9 1.3  5.1 4.1 2.6 1.2 1.2 

0.3 3.3 2.9 2.1 1.2 1.0  4.2 3.8 3.0 1.8 1.2  5.1 4.0 2.4 1.2 1.2 

0.6 4.1 3.6 2.6 1.3 1.0  4.2 3.7 2.7 1.6 1.0  5.1 3.7 2.0 1.1 1.1 

0.9 5.0 4.4 3.2 1.5 1.0  4.2 2.8 1.7 1.0 1.0  5.1 2.2 1.1 1.0 1.0 

a=2.00 0.0 1.3 1.2 1.2 1.1 1.0  2.3 2.3 2.2 1.8 1.3  1.7 1.6 1.4 1.1 1.0 

0.3 1.3 1.3 1.2 1.1 1.0  2.3 2.3 2.1 1.7 1.3  1.7 1.6 1.4 1.1 1.0 

0.6 1.5 1.5 1.4 1.1 1.0  2.3 2.3 2.1 1.5 1.1  1.7 1.6 1.3 1.1 1.0 

0.9 1.8 1.7 1.6 1.2 1.0  2.3 2.1 1.6 1.0 1.0  1.7 1.4 1.1 1.0 1.0 

a=2.50 0.0 1.1 1.1 1.0 1.0 1.0  2.0 2.0 1.9 1.7 1.3  1.2 1.2 1.1 1.1 1.0 

0.3 1.1 1.1 1.1 1.0 1.0  2.0 2.0 1.9 1.6 1.3  1.2 1.2 1.1 1.1 1.0 

0.6 1.1 1.1 1.1 1.0 1.0  2.0 2.0 1.9 1.5 1.1  1.2 1.2 1.1 1.0 1.0 

0.9 1.3 1.2 1.2 1.1 1.0  2.0 1.9 1.5 1.0 1.0  1.2 1.1 1.0 1.0 1.0 

a=3.00 0.0 1.0 1.0 1.0 1.0 1.0  1.9 1.9 1.8 1.6 1.3  1.1 1.1 1.1 1.0 1.0 

0.3 1.0 1.0 1.0 1.0 1.0  1.9 1.9 1.8 1.6 1.3  1.1 1.1 1.1 1.0 1.0 

0.6 1.0 1.0 1.0 1.0 1.0  1.9 1.8 1.7 1.4 1.2  1.1 1.1 1.0 1.0 1.0 

0.9 1.1 1.1 1.1 1.0 1.0  1.9 1.8 1.5 1.1 1.1  1.1 1.0 1.0 1.0 1.0 
1The data from Chen et al.[15] 

TABLE 3 ARL’s of the CSDW chart, and the VMAX chart when 2p  and 5n  in the Case of Section 3 

       

  0.0 0.3 0.5 0.7 

a2 UCLCSDW 25.18 26.35 28.05 30.15 

 UCLVMAX 3.677 3.675 3.668 3.646 

1.0 VMAX 200.0 200.0 200.0 200.0 

 CSDW 200.0 200.0 200.0 200.0 

1.1  139.1 139.3 139.7 140.5 

  132.8 136.1 138.0 139.98 

1.2  101.6 101.8 102.4 103.6 

  92.1 97.5 102.9 103.7 

1.3  77.1 77.4 78.0 79.3 

  67.7 72.7 78.0 80.3 

1.4  60.5 60.8 61.4 62.6 

  52.0 56.3 60.4 62.1 

1.5  48.7 49.0 49.6 50.8 

  41.3 45.2 49.2 50.6 

2.0  21.6 21.9 22.3 23.2 

  17.0 19.3 21.8 22.8 

3.0  8.64 8.80 9.09 9.59 

  6.7 7.71 8.92 9.2 

5.0  3.73 3.82 3.98 4.25 

  2.96 3.34 3.86 4.22 

TABLE 4 The part data of 1X , 2X  and CSDWT  after being standardized 

No.  Data Sample TCSDW 

1 X1 -0.32 0.14 -1.99 1.86 -0.84  

 X2 -1.2 -0.04 -0.02 0.47 -1.08 11.9 

2  -0.42 -0.62 1.14 -1.43 0.38  

  -0.96 0.32 0.36 -0.57 -1.83 5.25 

…  … … … … … … 

11  -0.35 1.01 0.87 -1.27 -0.29  

  0.52 2.01 1.57 -0.69 1.37 40.07 

…  … … … … … … 

20  1.95 2.5 -0.29 -2.28 1.73  

  1.51 1.82 0.35 -1.22 2.26 54.98 
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FIGURE 1 The CSDW chart for example 

The part data of 1X , 2X  and CSDWT  are contained 

in Table 4 after being standardized. The UCL=28.05 

(ARL0=200) is determined by simulation. A probability of 

TypeⅠerror of 5 per 1,000 ( 0.005)   is adopted.  

We construct our CSDW chart in Figure 1. It is shown 

from Figure 1 that the process is out-of-control at the 11th 

sample point (Run length=1) because the point is above the 

UCL. We can investigate the unstable process and take 

actions to bring it back into an in-control state as quickly as 

possible. 

 

6 Summary and Conclusions 

 

In this study, the new bivariate single chart is capable of 

Monitoring the Mean Vector and Covariance Matrix 

Simultaneously. Overall, through comparisons the new 

chart performs better than the joint 2T  and S  charts, 

the Max-MEWMA chart and the VMAX statistic. 

Meanwhile, the chart is easier to construct than the others 

because the chart does not require the need to select fewer 

parameters and requires less computation in designing. 

Practitioners could understand the procedure of the chart. 
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